Glucose-dependent anaplerosis in cancer cells is required for cellular redox balance in the absence of glutamine
نویسندگان
چکیده
Cancer cells have altered metabolism compared to normal cells, including dependence on glutamine (GLN) for survival, known as GLN addiction. However, some cancer cell lines do not require GLN for survival and the basis for this discrepancy is not well understood. GLN is a precursor for antioxidants such as glutathione (GSH) and NADPH, and GLN deprivation is therefore predicted to deplete antioxidants and increase reactive oxygen species (ROS). Using diverse human cancer cell lines we show that this occurs only in cells that rely on GLN for survival. Thus, the preference for GLN as a dominant antioxidant source defines GLN addiction. We show that despite increased glucose uptake, GLN addicted cells do not metabolize glucose via the TCA cycle when GLN is depleted, as revealed by (13)C-glucose labeling. In contrast, GLN independent cells can compensate by diverting glucose-derived pyruvate into the TCA cycle. GLN addicted cells exhibit reduced PDH activity, increased PDK1 expression, and PDK inhibition partially rescues GLN starvation-induced ROS and cell death. Finally, we show that combining GLN starvation with pro-oxidants selectively kills GLN addicted cells. These data highlight a major role for GLN in maintaining redox balance in cancer cells that lack glucose-dependent anaplerosis.
منابع مشابه
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells.
Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefo...
متن کاملFoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.
Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes...
متن کاملA metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect
Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which ...
متن کاملEnhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition
Cancer cells use precursors derived from tricarboxylic acid (TCA) cycle to support their unlimited growth. However, continuous export of TCA cycle intermediates results in the defect of mitochondrial integrity. Mitochondria glutamine metabolism plays an essential role for the maintenance of mitochondrial functions and its biosynthetic roles by refilling the mitochondrial carbon pool. Here we re...
متن کاملTargeting Glutamine Metabolism for Cancer Treatment
Rapidly proliferating cancer cells require energy and cellular building blocks for their growth and ability to maintain redox balance. Many studies have focused on understanding how cancer cells adapt their nutrient metabolism to meet the high demand of anabolism required for proliferation and maintaining redox balance. Glutamine, the most abundant amino acid in plasma, is a well-known nutrient...
متن کامل